Flux and polarization signals of spatially inhomogeneous gaseous exoplanets
نویسندگان
چکیده
Aims. We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System’s gaseous planets: belts and zones, cyclonic spots, and polar hazes, to test whether such features leave traces in the disk-integrated fux and polarization signals. Methods. Broadband flux and polarization signals of starlight that is reflected by gaseous exoplanets are calculated using an efficient, adding-doubling radiative transfer code, that fully includes single and multiple scattering and polarization. The planetary model atmospheres are vertically inhomogeneous and can be horizontally inhomogeneous, and contain gas molecules and/or cloud and/or aerosol particles. Results. The broadband flux and polarization signals are sensitive to cloud top pressures, although in the presence of local pressure differences, such as in belts and clouds, the flux and polarization phase functions have similar shapes as those of horizontally homogeneous planets. Fitting flux phase functions of a planet with belts and zones using a horizontally homogeneous planet could theoretically yield cloud top pressures that differ by a few hundred mbar from those derived from fitting polarization phase functions. In practice, however, observational errors and uncertainties in cloud properties would make such a fit unreliable. A cyclonic spot like Jupiter’s Great Red Spot, covering a few percent of the disk, located in equatorial regions, and rotating in and out of the observer’s view yields a temporal variation of a few percent in the broadband flux and a few percent in the degree of polarization. Polar hazes leave strong traces in the polarization of reflected starlight in spatially resolved observations, especially seen at phase angles near 90◦. Integrated across the planetary disk, polar hazes that cover only part of the planetary disk, change the broadband degree of polarization of the reflected light by a few percent. Such hazes have only small effects on locally reflected broadband fluxes and negligible effects on disk-integrated broadband fluxes. Conclusions. Deriving the presence of belts and zones in the atmospheres of gaseous exoplanets from broadband flux and polarization observations will be extremely difficult. Cyclonic spots could leave temporal changes in the broadband flux and polarization signals of a few percent. Polar hazes that cover a fraction of the planetary disk, and that are composed of small, Rayleigh scattering particles, change the broadband degree of polarization by at most a few percent.
منابع مشابه
Spectropolarimetric signatures of Earth–like extrasolar planets
We present results of numerical simulations of the flux (irradiance), F, and the degree of polarization (i.e. the ratio of polarized to total flux), P, of light that is reflected by Earth–like extrasolar planets orbiting solar–type stars, as functions of the wavelength (from 0.3 to 1.0 μm, with 0.001 μm spectral resolution) and as functions of the planetary phase angle. We use different surface...
متن کاملExperimental measurement of the “self-healing” of the spatially inhomogeneous states of polarization of radially and azimuthally polarized vector Bessel beams
We experimentally measured the “self-healing” of the spatially inhomogeneous states of polarization of radial and azimuthal polarized vector Bessel beams. Radial and azimuthal polarized vector Bessel beams were generated via a digital version of Durnin’s method, using a spatial light modulator in concert with a liquid crystal q-plate. As a proof of principle, their intensities and spatially inh...
متن کاملHigh-Contrast Imaging and High-Resolution Spectroscopy Observation of Exoplanets
Detection and characterization of exoplanets faces challenges of smaller angular separation and high contrast between exoplanets and their host stars. High contrast imaging (HCI) instruments equipped with coronagraphs are built to meet these challenges, providing a way of spatially suppressing and separating stellar flux from that of a planet. Another way of separating stellar flux can be achie...
متن کاملProper integration time of polarization signals of internetwork regions using Sunrise/IMaX data
Distribution of magnetic fields in the quiet-Sun internetwork areas has been affected by weak polarization (in particular Stokes Q and U) signals. To improve the signal-to-noise ratio (SNR) of the weak polarization signals, several approaches, including temporal integrations, have been proposed in the literature. In this study, we aim to investigate a proper temporal-integration time with which...
متن کاملA Semi-analytical Model of Visible-wavelength Phase Curves of Exoplanets and Applications to Kepler- 7 B and Kepler- 10 B
Kepler has detected numerous exoplanet transits by measuring stellar light in a single visible-wavelength band. In addition to detection, the precise photometry provides phase curves of exoplanets, which can be used to study the dynamic processes on these planets. However, the interpretation of these observations can be complicated by the fact that visible-wavelength phase curves can represent ...
متن کامل